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A simplified calculation procedure of
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A fast and practical method of computing electrolyte concentration profiles in terms of truncated
Chebyschev polynomials is described and illustrated by numerical examples.

In many electrochemical systems such as the rotat-
ing disc electrode [1], two-dimensional laminar
forced-flow between parallel-plate electrodes [2],
magnetically augmented laminar natural convec-
tion in electrolysis [3], and the convective
Warburg problem [4], the reacting ion-concen-
tration distribution, which exists between the
working electrode and the buik of the electrolyte,
may be expressed in terms of e"‘z-type integrands.
In all cases the concentration distribution may also
be expressed in terms of the incomplete gamma
function y(1/3, u) where u is a lumped integration
variable chosen appropriately for the given elec-
trode/cell configuration. Incomplete gamma func-
tions may, for instance, be computed by means of
the related /(u, p) functions compiled in Pearson’s
tables [S], but this procedure is not well suited for
quick approximate estimations via simple comput-
ing devices (e.g., pocket calculators and pocket
computers); numerical integration of the e‘xa-type
functions via quadratures suffers from similar
limitations.

A much less tedious computation may be
carried out in terms of Chebyschev polynomials
where the number of terms may be minimized for
a predetermined order of accuracy; this important
feature is linked to the fundamental property of
Chebyschev polynomials: their magnitude is
always less than unity [6, 7], regardless of the
independent variable and the polynomial index.
The strategy then is the following: (a) Express the
v(1/3, u) function as a convergent power series,
and (b) replace this series by a shorter Chebyschev
equivalent which is used for numerical
computation.

Considering step (a), the incomplete gamma
function in its general form:

7(11,2)EJ0 t"le~tdr 1))

where ¢, z are real and v > 1 may be expressed as a
convergent series [8-12]

oo ZV+k

Y@,2) = kgo (—1)* Ne+h) (2)

If the condition v > 1 is not satisfied, the trans-
lation property

v, z) = %[7(1;-!— 1,2) +z%7"] 3)

may be employed. Thus, in the specific case of
v = 1/3, the pertinent relationships are

v(1/3,2) = 3[y(4/3,2) +z'%*] (4a)
Y(4/3,2) = ., Apz®4¥ (4b)
k=0
where the magnitude of the coefficients
A= (40)
R Ki(k + 4/3) ¢

decreases rapidly with & as shown in Table 1.
Considering step (b) for a specified value of
z = z4, Equation 4b may be rewritten as

v@/3,2)) = Y apzf; an=Apzy?. (5)
k=0
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Table 1. Numerical values of the first seven Ay
coefficients in Equation 4c

k Ap, %AZ

0 0-75000 0-750 00
1 —0-42857 0-32143
2 0-150 00 0-47142
3 - 0-03846 0-43296
4 0-007 81 0-44077
5 —0-001 31 0-43945
6 0-00018 043964
7 —~2X10"° 043962

* Corresponding to successive approximations of
y(4/3, 1); after seven iterations, the hereby com-
puted value compares with the value of 0-439 29
obtained from [5].

The coefficients o, of the Chebyschev-equivalent

1(4/3,2)) = ) @, Te(z1) 6)
k

are related to a;, as shown in Table 2; more com-
prehensive tables (not needed for quick approxi-
mate computations) are given elsewhere (e.g.
[12]).

Consider, as an illustrative example, the concen-
tration field in a two-dimensional diffusion layer
in laminar forced convection [2]:

c 1

¢ 3
—— = ———| e* dx; T'(4/3) = 0-89298.
coax 1'(4/3) fo (“53)

(7)
Rewriting in terms of incomplete gamma
functions,

Table 2. Computation of the oy, coefficients of

N
the Chebyschey polynomial = apTp(x)

k=0
N
equivalent to the power expansion = akxk [6]
k=0
@
k k
N=2 N=3
0 a, +a,/2 a,+a,/2
1 a, a, + 3a,/4
2 a,/2 a,/2
3 - a,/4

To=1;T,(x) = x; T,(x) = 2x>—1;
To(x) =4x%—3x

c 1
Coux  '(4/3)

Let z = ¢3. Then, v(4/3, t3) may be directly calcu-
lated (using Equation 4b and Table 1) as

v(4/3,2) = 0-75z%3 — 0-428 57273+ 0-157%/3
—0-0384623/3 + — . (9)

Taking now the specific value of z = 0-5, Equation
9 may be rewritten as

v(4/3,0:5)=aq+ a1z + a,z* +azz®  (10)

where ¢q = 0-2976;4; = —0-1701; a, = 0-059 53;
a3 = —0:1526. The coefficients in Equation 6 are
computed as shown in Table 2 and the expansion

v(4/3,0-5)=0-3274T, — 0-1815T,
+0:029 76 T, — 0-003 816 T

[y(4/3,¢%) + ce 5]

®

(11)

is obtained. Since | T},,| < 1-0 for all n, if the last
two terms in Equation 11 are dropped, the maxi-
mum error magnitude is expected to be about

3 x 107% and the estimates y(4/3, 0-5) =

0242 35; ¢/cyux = 0-810 are obtained. If only the
T3-term is dropped in Equation 11, the expected
maximum error magnitude is about 3-8 x 10~3
and the estimates of y(4/3, 0-5) = 0-2218 and
¢/cpux = 0-787 are obtained (representing about

a 3% improvement). Thus, the simple linear

relationship

v(4/3,z2)=apt+ ayz 12)

yields a good approximation to the definition
integral; the drawback of the dependence of the
{or,} set on the numerical value of z is minor with
respect to the simplicity of Equation 12.

Similarly, in the recently posed Warburg-
impedance problem [4], the

1 <
Fo(m) = T@3) fnf dx (13)

function is converted to the form of

y(4/3, 7)) + me ™
I"(4/3)

and for n; = ~/0-5 the estimate:
1—07874 = 0-2126

Fo(m)) = 1—

is obtained.
Thus, Chebyschev polynomials may be seen to
be very useful in the development of reasonably
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accurate low-order polynomial approximations for
electrochemical computations via small-scale com-
puting devices.
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