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A fast and practical method of computing electrolyte concentration profiles in terms of truncated 
Chebyschev polynomials is described and illustrated by numerical examples. 

In many electrochemical systems such as the rotat- 
ing disc electrode [ 1 ], two-dimensional laminar 
forced-flow between parallel-plate electrodes [ 2], 
magnetically augmented laminar natural convec- 
tion in electrolysis [3], and the convective 
Warburg problem [4], the reacting ion-concen- 
tration distribution, which exists between the 
working electrode and the bulk of the electrolyte, 
may be expressed in terms of e-X3-type integrands. 
In all cases the concentration distribution may also 
be expressed in terms of the incomplete gamma 
function 3,(1/3, u) where u is a lumped integration 
variable chosen appropriately for the given elec- 
trode/cell configuration. Incomplete gamma func- 
tions may, for instance, be computed by means of 
the related I(u, p) functions compiled in Pearson's 
tables [5], but this procedure is not well suited for 
quick approximate estimations via simple comput- 
ing devices (e.g., pocket calculators and pocket 
computers); numerical integration of the e-X 3-type 
functions via quadratures suffers from similar 
limitations. 

A much less tedious computation may be 
carried out in terms of Chebyschev polynomials 
where the number of terms may be minimized for 
a predetermined order of accuracy; this important 
feature is linked to the fundamental property of 
Chebyschev polynomials: their magnitude is 
always less than unity [6, 7], regardless of the 
independent variable and the polynomial index. 
The strategy then is the following: (a) Express the 
7(1/3, u) function as a convergent power series, 
and (b) replace this series by a shorter Chebyschev 
equivalent which is used for numerical 
computation. 

Considering step (a), the incomplete gamma 
function in its general form: 

g .  z 

z) =- | tu-%-tdt 7(v, 
Jo 

(1) 

where t, z are real and u > 1 may be expressed as a 
convergent series [8-12] 

ZV+k 
7(v,z) = ~ (--1) 4 -  (2) 

4=o k!(v + k)" 

If the condition v > 1 is not satisfied, the trans- 
lation property 

z) = a_ [v0' + 1', z) + z"e -"] (3) 
/,, 

may be employed. Thus, in the specific case of 
v = 1/3, the pertinent relationships are 

7(1/3, z) = 3 [7(4/3, z) + zl/3e -z ] (4a) 

3'(4/3,z) =- ~ A4z (4+4/3) (4b) 
k = O  

where the magnitude of the coefficients 

A4 -= ( -  1) 4 1 (4c) 
k!(k + 4/3) 

decreases rapidly with k as shown in Table 1. 
Considering step (b) for a specified value of 

z = zl, Equation 4b may be rewritten as 

3'(4/3, zl) = ~ akz~; a4-A4z~/3. (5) 
k = 0  
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Table 1. Numerical values of  the first seven A k 
coefficients in Equation 4e 

k A k ~A* k 
k 

0 0.75000 0.75000 
1 - -  0-42857 0.321 43 
2 0.150 00 0-47142 
3 -- 0-03846 0.432 96 
4 0.007 81 0.440 77 
5 -- 0-001 31 0.43945 
6 0-000 18 0.439 64 
7 -- 2 X 10 -s 0-43962 

* Corresponding to successive approximations of 
3'(4/3, 1); after seven iterations, the hereby com- 
puted value compares with the value of 0.439 29 
obtained from [ 5]. 

The coefficients a n of  the Chebyschev-equivalent 

3,(4/3, Zl)  = 2 akTk(g l )  (6) 
k 

are related to ak as shown in Table 2; more com- 
prehensive tables (not needed for quick approxi- 
mate computat ions)  are given elsewhere (e.g. 

[121). 
Consider, as an illustrative example, the concen- 

trat ion field in a two-dimensional diffusion layer 
in laminar forced convection [ 2] : 

c 1 r~" x a 
- Jo e-  dx;  P(4 /3)  = 0 .89298.  

Cbulk  17(4/3) 

(7) 
Rewriting in terms o f  incomplete gamma 
functions, 

Table 2. Computation of  the ~k coefficients of  
N 

the Chebyschev polynomial ~ %Tk(x) 
k=0  

equivalent to the power expansion ~ akx k [6] 
k=O 

k 
ak  

N = 2  N = 3  

0 a o + a J 2  a o + a2/2  

1 a I a 1 + 3 a J 4  

2 a2/2 a2/2 
3 - a3/4 

T O = 1; Tl(x) =x;T2(x) = 2x 2 -  i ;  
T3(x) = 4x 3 -- 3x 

c _ 1 ~3 
Chalk r ( 4 / 3 )  [7(4/3,  [a)  + r e -  ]. (8) 

Let z = ~-3. Then, 3`(4/3, fa) may be directly calcu- 
lated (using Equation 4b and Table 1 ) as 

3,(4/3, z) = 0.75z 4 / 3 -  0-428 57z 7/3 + 0.15z 1~ 

--  0"038 46z 13/3 + - - . . .  (9) 

Taking now the specific value of  z -- 0"5, Equation 

9 may be rewritten as 

3 , ( 4 / 3 , 0 . 5 ) - - ~ a o + a l z + a 2 z ~ + a a z  a (10) 

where ao = 0.2976; al  = - -  0.1701 ; a2 = 0.059 53; 
a3 = - 0 . 1 5 2 6 .  The coefficients in Equation 6 are 
computed as shown in Table 2 and the expansion 

3,(4/3, 0.5) --- 0.3274 To - 0.1815 Ta 

+ 0.029 76 T 2 -  0.003 816 T3 (11) 

is obtained.  Since I Tnl ~< 1.0 for all n, if  the last 
two terms in Equation 11 are dropped,  the maxi- 
mum error magnitude is expected to be about 
3 x 10 -2 and the estimates 3,(4/3, 0-5) = 

0"242 35; C/Cbtak = 0"810 are obtained.  If only the 
Ta-term is dropped in Equation 11, the expected 
maximum error magnitude is about 3.8 x 10 .3 

and the estimates o f  3`(4/3, 0.5) = 0.2218 and 
C/Cbva k = 0"787 are obtained (representing about 
a 3% improvement) .  Thus, the simple linear 
relationship 

3,(4/3, z) ---- ao + a l  z (12) 

yields a good approximation to the definit ion 
integral; the drawback o f  the dependence o f  the 
{ak} set on the numerical value o f z  is minor  with 
respect to the simplicity o f  Equation 12. 

Similarly, in the recently posed Warburg- 
impedance problem [4],  the 

1 f~ie_X3dx (13) F~ - P(4 /3)  

function is converted to the form of  
_r/- 3 

3,(4/3, r/?) + r/ie 1 
Fo(rh)  = 1 17(4/3) 

and for ~7i = ~/0"5 the estimate: 

1 - - 0 ' 7 8 7 4  = 0.2126 

is obtained. 
Thus, Chebyschev polynomials  may be seen to 

be very useful in the development o f  reasonably 
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accurate low-order polynomial  approximations for 

electrochemical computat ions ~ia small-scale com- 

puting devices. 
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